Part Number Hot Search : 
CPC1978 2SB1063R IM2405SA 2SC49 C3500 ADV7177 TW9966 MC14071
Product Description
Full Text Search
 

To Download V23990-K420-A50-P3-14 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-k420-a50-pm preliminary datasheet miniskiip? 3 pim 1200v/100a solderless interconnection mitsubishi generation 6 technology industrial motor drives v23990-k420-a50-pm t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 77 t c =80c 107 t h =80c 82 t c =80c 125 maximum junction temperature t j max 150 c inverter transistor t h =80c 77 t c =80c 102 t h =80c 138 t c =80c 209 t sc t j 150c 10 s v cc v ge =15v 800 v w t j =t j max a v c 175 t j max v ce i c v ge i cpulse a 1200 a v t j =t j max vce 850v, tj top max t p limited by t j max repetitive peak collector current power dissipation per igbt maximum junction temperature short circuit ratings features miniskiip? 3 housing target applications schematic a dc forward current surge forward current t p =10ms t j =t j max t c =25c t c =150c types i 2 t-value maximum ratings i fav a 2 s i fsm condition input rectifier diode 3960 a 1000 t j =t j max p tot w power dissipation per diode i 2 t p tot gate-emitter peak voltage turn off safe operating area collector-emitter break down voltage dc collector current 300 20 300 copyright vincotech 1 revision: 3
v23990-k420-a50-pm preliminary datasheet t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter diode t h =80c 74 t c =80c 97 t h =80c 113 t c =80c 172 brake transistor t h =80c 77 t c =80c 104 t h =80c 146 t c =80c 221 t sc t j 150c 10 s v cc v ge =15v 800 v brake diode t h =80c 62 t c =80c 98 t h =80c 114 t c =80c 173 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm cti >200 t j =25c t j =t j max v a 1200 t j max a v i frm p tot t j =t j max repetitive peak collector current a a 175 v c w t j =t j max 20 maximum junction temperature short circuit ratings power dissipation per igbt gate-emitter peak voltage p tot t p limited by t j max maximum junction temperature repetitive peak forward current power dissipation per diode peak repetitive reverse voltage w 175 c dc forward current i f repetitive peak forward current v ge t j max peak repetitive reverse voltage i frm v rrm v v ce i cpuls i c turn off safe operating area dc collector current collector-emitter break down voltage a c dc forward current i f v rrm t j =25c 175 t j =t j max t p limited by t j max 300 vce 850v, tj top max t j =t j max w a a t p limited by t j max 200 power dissipation per diode p tot t j =t j max maximum junction temperature t j max -40?+(tjmax - 25) c storage temperature t stg -40?+125 c comparative tracking index insulation voltage creepage distance t op operation temperature under switching condition clearance 200 1200 300 1200 copyright vincotech 2 revision: 3
v23990-k420-a50-pm preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max t j =25c 1,10 1,21 t j =125c 1,05 t j =25c 0,89 t j =125c 0,75 t j =25c 3 t j =125c 4 t j =25c 0,05 t j =125c thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,05 k/w t j =25c 5,4 6 6,6 t j =150c t j =25c 1,78 2,15 t j =150c 1,95 t j =25c 1 t j =150c t j =25c 500 t j =150c t j =25c 113 t j =150c 113 t j =25c 24 t j =150c 28 t j =25c 177 t j =150c 235 t j =25c 61 t j =150c 101 t j =25c 6,93 t j =150c 10,78 t j =25c 5,82 t j =150c 10,11 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 0,69 k/w t j =25c 1,35 1,76 2,05 t j =150c 1,76 t j =25c 89 t j =150c 108 t j =25c 264 t j =150c 432 t j =25c 9,56 t j =150c 19,01 di ( rec ) max t j =25c 1085 /d t t j =150c 733 t j =25c 3,56 t j =150c 7,41 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 0,84 k/w 100 mws a 0 15 0 570 tj=25c tj=25c 233 6740 100 100 15 erec v ce(sat) i ces t r t d(off) v ge(th) r gint q gate c oss c rss q rr t rr i ges t f e on e off t d(on) i rrm v f input capacitance output capacitance turn-off energy loss per pulse integrated gate resistor inverter transistor gate emitter threshold voltage value conditions characteristic values forward voltage threshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode v v 75 1600 75 m ? ma 75 reverse current i r c a/ s v v ce =v ge rgon=8 ? 20 15 600 f=1mhz rgoff=8 ? 10 15 1200 0 600 100 15 10 turn-on energy loss per pulse reverse recovered charge inverter diode peak reverse recovery current reverse transfer capacitance diode forward voltage gate charge c ies collector-emitter saturation voltage gate-emitter leakage current reverse recovery time reverse recovered energy peak rate of fall of recovery current fall time turn-off delay time turn-on delay time rise time 0,001 100 collector-emitter cut-off current incl. diode rgon=8 ? 73 none mws ns v nc na ns nf v ma ? copyright vincotech 3 revision: 3
v23990-k420-a50-pm preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max value conditions characteristic values t j =25c 5,4 6 6,6 t j =150c t j =25c 1,77 2,15 t j =150c 2,02 t j =25c 1 t j =150c t j =25c 500 t j =150c none t j =25c 115 t j =150c 114 t j =25c 51 t j =150c 55 t j =25c 175 t j =150c 232 t j =25c 53 t j =150c 102 t j =25c 10,10 t j =150c 14,70 t j =25c 5,83 t j =150c 10,13 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 0,65 k/w t j =25c 1,35 1,69 2,05 t j =150c 1,76 t j =25c 18 t j =150c t j =25c 53 t j =150c 74 t j =25c 314 t j =150c 509 t j =25c 8,58 t j =150c 8,58 di ( rec ) max t j =25c 570 /d t t j =150c 290 t j =25c 3,16 t j =150c 6,94 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 0,83 k/w tj=25c vincotech ptc reference b-value e b (25/100) tj=25c b-value b (25/50) 1/k2 tj=25c 7,635*10-3 1/k 1,731*10-5 v v a v ns a/ s a mws c ? 1000 3 -3 % tj=25c 73 tj=25c 1670,313 233 6740 i ces collector-emitter cut-off incl diode gate emitter threshold voltage v ge(th) v ce(sat) 100 0,001 10 gate charge input capacitance q gate reverse transfer capacitance c oss rise time turn-on delay time t f fall time t d(on) collector-emitter saturation voltage gate-emitter leakage current turn-off delay time t d(off) r gint peak rate of fall of recovery current peak reverse recovery current reverse recovered charge output capacitance c ies e off turn-on energy loss per pulse turn-off energy loss per pulse integrated gate resistor brake transistor nc mw/k power dissipation p ? rated resistance r power dissipation constant deviation of r100 r/r r100=1670 ? c rss 0 15 15 f=1mhz i ges e on t r rgon=8 ? rgoff=8 ? v ce =v ge 15 0 20 ma na ? 0 ns pf mws 100 v f i r i rrm diode forward voltage reverse leakage current 15 brake diode reverse recovery energy t rr q rr e rec reverse recovery time thermistor rgon=8 ? rgon=8 ? rgon=8 ? 100 1200 600 10 15 1200 600 100 100 tj=25c tc=100c tc=100c tj=25c 570 copyright vincotech 4 revision: 3
v23990-k420-a50-pm preliminary datasheet figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 output inverter igbt figure 4 output inverter fwd typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v output inverter typical output characteristics 0 50 100 150 200 250 300 350 400 012345 v ce (v) i c (a) 0 30 60 90 120 150 036912 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 100 200 300 400 01234 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 250 300 350 400 012345 v ce (v) i c (a) copyright vincotech 5 revision: 3
v23990-k420-a50-pm preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 101 a r goff = 8 ? figure 7 output inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 101 a output inverter e on high t e off high t e on low t e off low t 0 5 10 15 20 25 30 0 50 100 150 200 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 5 10 15 20 25 0 10203040 r g ( ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 2 4 6 8 10 0 50 100 150 200 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 2 4 6 8 10 0 10203040 r g ( ) e (mws) copyright vincotech 6 revision: 3
v23990-k420-a50-pm preliminary datasheet figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 101 a r goff = 8 ? figure 11 output inverter fwd figure 12 output inverter fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 101 a r gon = 8 ? v ge = 15 v output inverter t doff t f t don t r 0,00 0,01 0,10 1,00 0 50 100 150 200 i c (a) t ( s) t j = t jmax -25c t rr t j = 25c t rr 0,0 0,2 0,4 0,6 0,8 0 10203040 r gon ( ) t rr ( s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 10203040 r g ( ) t ( s) t j = t jmax -25c t rr t j = 25c t rr 0 0,2 0,4 0,6 0,8 0 50 100 150 200 i c (a) t rr ( s) copyright vincotech 7 revision: 3
v23990-k420-a50-pm preliminary datasheet figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 101 a r gon = 8 ? v ge = 15 v figure 15 output inverter fwd figure 16 output inverter fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 101 a r gon = 8 ? v ge = 15 v output inverter i rrm t j = t jmax - 25c i rrm t j = 25c 0 50 100 150 200 250 300 0 10203040 r gon ( ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 5 10 15 20 25 0 10203040 r gon ( ) q rr ( c) t j = t jmax -25c i rrm t j = 25c i rrm 0 30 60 90 120 150 0 50 100 150 200 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 5 10 15 20 25 30 0 50 100 150 200 i c (a) q rr ( c) copyright vincotech 8 revision: 3
v23990-k420-a50-pm preliminary datasheet figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c )d i 0 /dt,di rec /dt = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 101 a r gon = 8 ? v ge = 15 v figure 19 output inverter igbt figure 20 output inverter fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0,69 k/w r thjh = 0,84 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,04 4,8e+00 0,03 3,9e+00 0,04 4,8e+00 0,03 3,9e+00 0,11 1,1e+00 0,09 8,6e-01 0,11 8,9e-01 0,09 7,3e-01 0,33 2,5e-01 0,26 2,0e-01 0,43 1,9e-01 0,35 1,5e-01 0,14 9,4e-02 0,12 7,6e-02 0,17 4,8e-02 0,14 3,9e-02 0,05 1,3e-02 0,04 1,0e-02 0,08 9,3e-03 0,07 7,5e-03 0,02 1,0e-03 0,01 8,5e-04 thermal grease phase change interface thermal grease phase change interface output inverter t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 0 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 0 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 4000 8000 12000 16000 0 10203040 r gon ( ) di rec / dt (a/ s) di 0 /dt di rec /dt 0 800 1600 2400 3200 4000 0 50 100 150 200 i c (a) di rec / dt (a/ s) di rec /dt di 0 /dt copyright vincotech 9 revision: 3
v23990-k420-a50-pm preliminary datasheet figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 175 c t j = 175 c v ge = 15 v figure 23 output inverter fwd figure 24 output inverter fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 c t j = 175 c output inverter 0 50 100 150 200 250 300 0 50 100 150 200 t h ( o c) p tot (w) 0 25 50 75 100 125 0 50 100 150 200 t h ( o c) i c (a) 0 50 100 150 200 250 0 50 100 150 200 t h ( o c) p tot (w) 0 20 40 60 80 100 120 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 3
v23990-k420-a50-pm preliminary datasheet figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f(v ce )v ge = f(q ge ) at at d = single pulse i c = 101 a tj= 25 oc t h = 80 oc v cc = 600 v v ge = 15 v t j =t jmax oc figure 27 output inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical short circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge )v ge = f(q ge ) at at v ce = 1200 v v ce 1200 v t j 175 oc t j = 175 oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100u s 1ms 10m s 100ms d c 1 0 0 0 4 8 12 16 20 0 50 100 150 200 250 q g (nc) v ge (v) 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 0 200 400 600 800 1000 1200 1400 v ge (v) i c(normalized) [a] 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 13 14 15 16 17 v ge (v) i c /i n (a) copyright vincotech 11 revision: 3
v23990-k420-a50-pm preliminary datasheet figure 29 igbt reverse bias safe operating area i c = f(v ce ) at t j =t jmax -25 oc u ccminus =u ccplus switching mode : 3 level switching 0 50 100 150 200 250 0 200 400 600 800 1000 1200 1400 v ce (v) i c (a) i c max v ce ma x i c module i c chip copyright vincotech 12 revision: 3
v23990-k420-a50-pm preliminary datasheet figure 1 brake igbt figure 2 brake igbt typical output characteristics typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 brake igbt figure 4 brake fwd typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v brake 0 50 100 150 200 250 300 350 400 450 012345 v ce (v) i c (a) 0 25 50 75 100 125 150 03691215 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 100 200 300 400 01234 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 250 300 350 400 450 012345 v ce (v) i c (a) copyright vincotech 13 revision: 3
v23990-k420-a50-pm preliminary datasheet figure 5 brake igbt figure 6 brake igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 101 a r goff = 8 ? figure 7 brake fwd figure 8 brake fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 101 a brake e rec t j = t jmax - 25c t j = 25c e rec 0 2 4 6 8 10 0 50 100 150 200 i c (a) e (mws) e rec t j = t jmax -25c t j = 25c e rec 0 2 4 6 8 10 0 10203040 r g ( ) e (mws) e off t j = t jmax -25c e on e on t j = 25c e off 0 10 20 30 40 0 50 100 150 200 i c (a) e (mws) t j = t jmax -25c e off e on e on t j = 25c e off 0 5 10 15 20 25 30 0 10203040 r g ( ) e (mws) copyright vincotech 14 revision: 3
v23990-k420-a50-pm preliminary datasheet figure 9 brake igbt figure 10 brake igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 101 a r goff = 8 ? figure 11 brake igbt figure 12 brake fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at d = tp / t at d = tp / t r thjh = 0,651 k/w r thjh = 0,53 k/w r thjh = 0,83 k/w r thjh = 0,68 k/w thermal grease phase change interface brake thermal grease phase change interface t doff t f t don t r 0,00 0,01 0,10 1,00 0 50 100 150 200 i c (a) t ( s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 8 16 24 32 40 r g ( ) t ( s) t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 0 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 0 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 15 revision: 3
v23990-k420-a50-pm preliminary datasheet figure 13 brake igbt figure 14 brake igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 15 brake fwd figure 16 brake fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 oc t j = 175 oc brake 0 50 100 150 200 250 300 0 50 100 150 200 t h ( o c) p tot (w) 0 20 40 60 80 100 120 0 50 100 150 200 t h ( o c) i c (a) 0 50 100 150 200 250 0 50 100 150 200 th ( o c) p tot (w) 0 20 40 60 80 100 120 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 16 revision: 3
v23990-k420-a50-pm preliminary datasheet figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 sd = t p / t r thjh = 0,849 k/w figure 3 rectifier diode figure 4 rectifier diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 oc t j = 150 oc input rectifier bridge 0 50 100 150 200 250 300 350 00,511,52 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 40 80 120 160 200 0 50 100 150 200 t h ( o c) p tot (w) 0 30 60 90 120 150 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 17 revision: 3
v23990-k420-a50-pm preliminary datasheet figure 1 thermistor typical ntc characteristic as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 500 1000 1500 2000 2500 3000 25 45 65 85 105 125 t (c) r/ ? copyright vincotech 18 revision: 3
v23990-k420-a50-pm preliminary datasheet t j 150 c r g on 8 ? r goff 8 ? figure 1 output inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t dof f , t eof f turn-on switching waveforms & definition of tdon, t eon (t eof f = integrating time for e of f )( t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 100 a i c (100%) = 100 a t doff = 0,23 s t don = 0,11 s t eoff = 0,88 s t eon = 0,39 s figure 3 output inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 100 a i c (100%) = 100 a t f = 0,10 s t r = 0,03 s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -25 0 25 50 75 100 125 -0,2 0 0,2 0,4 0,6 0,8 1 time (us) % t doff t eoff v ce i c v ge i c 10% v ge 10% t don v ce 3% -50 0 50 100 150 200 250 3,9 4 4,1 4,2 4,3 4,4 4,5 time(us) % i c v ce t eon v ge fitted i c 10% i c 90% i c 60% i c 40% -25 0 25 50 75 100 125 0 0,1 0,2 0,3 0,4 0,5 time (us) % v ce i c t f i c 10% i c90% -50 0 50 100 150 200 250 4 4,1 4,2 4,3 4,4 4,5 time(us) % t r v ce i c copyright vincotech 19 revision: 3
v23990-k420-a50-pm preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eof f turn-on switching waveforms & definition of t eon p off (100%) = 59,89 kw p on (100%) = 59,89 kw e off (100%) = 9,66 mj e on (100%) = 10,41 mj t eoff = 0,88 s t eon = 0,39 s figure 7 output inverter fwd figure 8 output inverter igbt gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t r r v geoff = -15 v v d (100%) = 600 v v geon = 15 v i d (100%) = 100 a v c (100%) = 600 v i rrm (100%) = -113 a i c (100%) = 100 a t rr = 0,43 s q g = 410,72 nc switching definitions output inverter i c 1% v ge 90% -25 0 25 50 75 100 125 -0,25 0 0,25 0,5 0,75 1 1,25 time (us) % p off e off t eoff v ce 3% v ge 10% -50 0 50 100 150 200 3,9 4 4,1 4,2 4,3 4,4 4,5 time(us) % p on e on t eon -20 -15 -10 -5 0 5 10 15 20 -100 0 100 200 300 400 500 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -150 -100 -50 0 50 100 150 3,8 4 4,2 4,4 4,6 4,8 time(us) % i d v d fitted copyright vincotech 20 revision: 3
v23990-k420-a50-pm preliminary datasheet figure 9 output inverter fwd figure 10 output inverter fwd turn-on switching waveforms & definition of t qr r turn-on switching waveforms & definition of t erec (t qrr = integrating time for q r r )( t erec = integrating time for e rec ) i d (100%) = 100 a p rec (100%) = 59,89 kw q rr (100%) = 19,38 c e rec (100%) = 7,61 mj t qrr = 0,89 s t erec = 0,89 s switching definitions output inverter t qrr -150 -100 -50 0 50 100 150 3,8 4,2 4,6 5 5,4 % i d q rr time ( us ) -25 0 25 50 75 100 125 3,8 4,2 4,6 5 5,4 time(us) % p rec e rec t erec copyright vincotech 21 revision: 3
v23990-k420-a50-pm preliminary datasheet version ordering code in datamatrix as in packaging barcode as with std lid (black v23990-k12-t-pm) v 23990-k420-a50-/0a/-pm k420a50 k420a50-/0a/ with std lid (black v23990-k12-t-pm) and p12 v23990-k420-a50-/1a/-pm k420a50 k420a50-/1a/ with thin lid (white v23990-k13-t-pm) v23990-k420-a50-/0b/-pm k420a50 k420a50-/0b/ with thin lid (white v23990-k13-t-pm) and p12 v23990-k420-a50-/1b/-pm k420a50 k420a50-/1b/ outline pinout ordering code & marking ordering code and marking - outline - pinout copyright vincotech 22 revision: 3
v23990-k420-a50-pm preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: product status datasheet status definition this datasheet contains the design specifications for product development. specific ations may change in any manner without notice. the dat a contained is exclusively intended for technica lly trai ned staff. vincotech products are not authorised for use as critical components in life support devices or systems without the express wri tten approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. target preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for te chnically tr ained st aff. the information given in this datasheet describes the type of component and does not represent assured characteristics. for tes ted values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to i mprove reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product o r circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. copyright vincotech 23 revision: 3


▲Up To Search▲   

 
Price & Availability of V23990-K420-A50-P3-14

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X